Calculus with Analytic Geometry
Summer 2016

Linearization and Differentials

Linearization

Definition. Let $f(x)$ be a differentiable function with domain D, a is a real number in D. We define the Linerization of $f(x)$ at $x=a$ to be

$$
L(x)=f(x)+f^{\prime}(a)(x-a)
$$

Example 1. Use the linearization of $f(x)=x^{2}$ at $x=1$ to estimate 1.01^{2}.
The first derivetive of $f(x)$ is $f^{\prime}(x)=2 x$. The linearization of $f(x)=x^{2}$ at $x=1$ is

$$
L(x)=f(1)+f^{\prime}(1)(x-1)=1+2(x-1)
$$

Hence 1.01^{2} is approximated by $L(1.01)=1+2(1.01-1)=1.02$.

Differential

Definition. Let $y=f(x)$ be a differentiable function, the differential of $y=$ $f(x)$ is defined as

$$
d y=f^{\prime}(x) d x
$$

Example 2. Let $y=f(x)=x^{2}$, find its differential.
The first derivetive of $f(x)$ is $f^{\prime}(x)=2 x$. The differential is

$$
d y=2 x d x
$$

